

2

Practical Php Testing 3

Table of Contents
Introduction...5
About the author..5

Contacts...5
Donations...6
Errata..6

Disclaimer..7
Copyright?..7
Acknowledgements...7

Preface: why testing?...8
Chapter 1: PHPUnit usage ...10

TDD exercises...13
Chapter 2: write clever tests ...14

TDD exercises...16
Code sample...18

Chapter 3: assertions ..20
TDD exercises...22
Code sample...23

Chapter 4: fixtures ..24
TDD exercises...26

Chapter 5: annotations ...27
TDD exercises...30
Code sample...31

Chapter 6: refactoring and patterns33
TDD exercises...35

Chapter 7: stubs ...36
TDD exercises...40
Code sample...41

Chapter 8: mocks ..43
TDD exercises...45
Code sample...46

Chapter 9: command line options48
TDD exercises...50

Chapter 10: The TDD theory..51
TDD Phases...51

4

RED ..51
GREEN ..52
REFACTOR (sometimes orange) ...52

Chapter 11: Testing sqrt()..54
TDD Exercises...56
Code sample...57

Glossary...58

Practical Php Testing 5

Introduction
This practical testing book is aimed to php developers and features the
articles from the Practical php testing series of my blog, plus new content
only available in this book:

• preface to explain why we should care about testing php
applications.

• bonus chapter on TDD theory and a case study.

• code samples, some of whom were originally kept on
pastebin.com; this php code complements many chapters. Code is
highlighted with a special background.

• Sets of TDD exercises at the end of each chapter. Test-Driven
Development is a practice where tests are written before the
production code. This is not a book specifically on TDD, but these
exercises will help you grasp the fundamentals of this methodology
and its advantages: testable code, effective test suite and the good
design that ensues. The TDD theory (chapter 10) closes the circle.

• A glossary that substitutes external links to wiki and other posts, to
not interrupt your reading with terms lookup.

About the author
My name is Giorgio Sironi and I am an undergraduate 29+ student at the
Politecnico di Milano in Italy (the equivalent of a 3.9 GPA in United States).
I attend the faculty of Ingegneria Informatica (Computer Engineering). I've
worked and still work in the web development field and I'm the creator of
Ossige no Cms and NakedPhp, that I use to create management application
(e-school, business) and websites.

You probably have downloaded this book from my blog, Invisible to the
eye:

http://giorgiosironi.blogspot.com

If not, no problem! What is important is that you have access to the
information you need to grow as a developer or engineer. Come visit the
blog for more discussions on testing and object-oriented architecture.

http://sourceforge.net/projects/ossigeno
http://giorgiosironi.blogspot.com/
http://sourceforge.net/projects/nakedphp
http://sourceforge.net/projects/ossigeno

6 About the author

Contacts
You are free to contact me on my blog, or in other places on the web:

piccoloprincipeazzurro at gmail dot com

http://twitter.com/giorgiosironi

Donations
If you find helpful my work and you want to support it someway, I accept
donations:

http://doiop.com/giorgiosironipaypal

Or, just in case the redirected url above does not work:

https://www.paypal.com/cgi-bin/webscr?
cmd=_donations&business=WF7MNWBMZE9KQ&lc=GB&item_name=Gior
gio
%20Sironi&item_number=invisibletotheeye¤cy_code=EUR&bn=PP
%2dDonationsBF%3abtn_donate_LG%2egif%3aNonHosted

Errata
Practical Php Testing 1st edition (December 2, 2009).

Errata web page: http://giorgiosironi.blogspot.com/2009/12/practical-php-
testing-errata.html

Unless a further edition may be publicated, refer to the linked web page
for corrections.

http://giorgiosironi.blogspot.com/2009/12/practical-php-testing-errata.html
http://giorgiosironi.blogspot.com/2009/12/practical-php-testing-errata.html
https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=WF7MNWBMZE9KQ&lc=GB&item_name=Giorgio%20Sironi&item_number=invisibletotheeye¤cy_code=EUR&bn=PP-DonationsBF%3Abtn_donate_LG.gif%3ANonHosted
https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=WF7MNWBMZE9KQ&lc=GB&item_name=Giorgio%20Sironi&item_number=invisibletotheeye¤cy_code=EUR&bn=PP-DonationsBF%3Abtn_donate_LG.gif%3ANonHosted
https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=WF7MNWBMZE9KQ&lc=GB&item_name=Giorgio%20Sironi&item_number=invisibletotheeye¤cy_code=EUR&bn=PP-DonationsBF%3Abtn_donate_LG.gif%3ANonHosted
https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=WF7MNWBMZE9KQ&lc=GB&item_name=Giorgio%20Sironi&item_number=invisibletotheeye¤cy_code=EUR&bn=PP-DonationsBF%3Abtn_donate_LG.gif%3ANonHosted
http://doiop.com/giorgiosironipaypal
http://twitter.com/giorgiosironi

Practical Php Testing 7

Disclaimer
This book has been written for educational and informational purposes and
the author made every reasonable attempt to achieve accuracy of the
content. The author assumes no responsibility for errors or omissions and
is not liable for incorrect or no longer up-to-date information may cause to
your work.

Copyright?

© 2009 Giorgio Sironi

This ebook is licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 3.0 United States License.

I actually encourage you to give this ebook to your friends and
fellows if they are interested, electronically or by printing. I think the book
has a better effect if read in its entirety, but you can also extract part of it
as long as you cite the original author as the source (Giorgio Sironi). If you
publish a part of it online, I would be thankful for a link to
http://giorgiosironi.blogspot.com, and glad if you contact me to let me
know my work has been useful to you. I don't charge anything and you
should definitely “pirate” this book but please maintain the correct
attribution. :)

Acknowledgements
The ebook cover is a parody of an illustration from The Little Prince by
Antoine de Saint-Exupéry, where an elephant is eaten by a snake in its
entirety. The original elephant is replaced by a elePHPant image from a
photography, courtesy of Raphael Dohms (http://twitter.com/rdohms).

All other images in this book are create from scratch or provenient from
Wikimedia Commons.

This book is dedicated to Kiki, who tolerates me when I get in the zone and
dive into programming without caring about the outside world.

http://twitter.com/rdohms
http://giorgiosironi.blogspot.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/
http://giorgiosironi.blogspot.com/
http://creativecommons.org/licenses/by-nc-sa/3.0/us/

8 Disclaimer

Practical Php Testing 9

Preface: why testing?
I don't like books prefaces that take me days to read before arriving to the
real content, so I will be very brief here.

• How many times in the last month have you seen a broken screen
in the browser?

• How many times did you have to debug in the browser, by
looking at the output, inserting debug statements and breaking
redirects?

• How many times did you perform manual testing, by loading a
staging version of your application and tried out different
workflows in the browser?

If the answer to these questions is more than very few, it's likely that you
should give automated testing a chance. Testing can be handled
professionally, by writing a test suite that you can run at the push of a
button and from the command line. If well-written, this suite will show you
a list of localized errors and where to go to fix them. It will eliminate most
of the debugging from your day.

How testing does so? Unit testing is the testing flavor I prefer and which
gives much advantages. Since Car examples are very popular, I would say
that it is comparable to testing a car by dismantling it and running
workbench tests on every single piece, with the difference that the pieces
do not wear out and that the process takes from some milliseconds to a
minute (since you can sometimes decide that you are only interested in
exercising the engine or the doors). There are other testing paradigms,
such as integration testing, but they are less effective in locating problems
and bugs than class-focused test cases (since the typical unit under test is
a single class), and in dictating an Api and an architecture.

Unit testing means freedom of development, without the fear of breaking
something and not noticing it: running a full test on the components
affected by code modifications takes only seconds. It also results in well-
designed code, because cohesion and decoupling are testability
requirements. Code is a children game: it can be a miniature car which you
can't alter, or it can be a set of Lego bricks which you can always construct
new buildings and starships with. I'm sure the majority of this book readers
were the children that liked disassembling games.

10 Preface: why testing?

Now that we are adults we do not play with Lego bricks anymore, but with
classes. The difference resides in if we want to play with decoupled and
testable classes or with an untestable mess.

Very often I heard people saying “this class is too difficult to test”. My
response is: refactor the design to aid testability. Testing is not a tedious
non-functional specification which forces the developer to add otherwise
unuseful code: it is the driving force behind good architecture. As you will
discover in TDD exercises, if we write code to satisfy a test suite, and then
throw away the test suite, we are still left with a better product than with
the result of cowboy coding. More focused classes, small interfaces and
good Api are the by-products of unit testing.

Testing is not a code base detail in this book's weltanschauung: it is the
starting point.

Practical Php Testing 11

Chapter 1: PHPUnit usage
What is unit testing and why a php programmer should
adopt it? It may seem simple, but testing is the only way to
ensure your work is completed and you will not called in the
middle of the night by a client whose website is going nuts.
The need for quality is particularly present in the php

environment, where it is very simple to deploy an interpreted script, but it
is also very simple to break something: a missing semicolon in a
common file can halt the entire application.
Unit testing is the process of writing tests which exercise the basic
functionality of the smallest cohesive unit in php: a class. You can also
write tests for procedures and functions, but unit testing works at its best
with cohesive and decouple classes. Thus, object-oriented programming is
a requirement; this process is contrapposed to functional and integration
testing, which build medium and large graphs of objects when run. Unit
testing istances one, or very few, units at the time, and this implies that
unit tests are tipically easy to run in every environment and do not burden
the system with heavy operations.

When the time comes for unit and functional testing, there's only one
leader in the php world: PHPUnit. PHPUnit is the xUnit instance for the
average and top-class php programmer; born as a port of JUnit, has quickly
filled the gap with the original Java tool thanks to the potential of a
dynamic language such as php. It even surpassed the features and the
scope of JUnit providing a simple mocking framework (whose utility will be
discovered during this journey in testing).

The most common and simplest way to install PHPUnit is as Pear package.
On your development box, you need only the php binary and the pear
executable.

sudo pear channel-discover pear.phpunit.de
sudo pear install phpunit/PHPUnit

Using a root shell (or a administrator on if you develop on other operating
systems) instead of sudo is totally equivalent. Administrator permissions
are usually mandatory to install Pear packages.

These commands tell pear to add the channel of PHPUnit developers, and
to install the PHPUnit package from the now-available phpunit channel.

http://4.bp.blogspot.com/_8AyqsjOhFcI/SroFxAXLqBI/AAAAAAAAAEo/7mEJel8Ch7U/s1600-h/phpunit-logo.gif

12 Chapter 1: PHPUnit usage

The chosen release is the latest stable package; at the time of this writing,
the 3.4 version.
If the installation is successful, you now have a phpunit executable
available from the command line. This is where you will run tests; if you
use an IDE, probably there is a menu for running tests that will show you
the command line output (and you should also install phpunit from the IDE
interface to make it discover the new tool).

In this book, I prefer to use the command-line interface to not add other
levels of indirection which could get in the way of learning. Everything you
can do with an IDE like Netbeans or Eclipse, you can surely do in the
command-line environment.

Before exploring the endless possibilities of testing, let's write our first
one: the simplest test that could possibly work. I saved this php code in
MyTest.php:

class MyTest extends PHPUnit_Framework_TestCase
{
 public function testComparesNumbers()
 {
 $this->assertTrue(1 == 1);
 }
}

What is a test? And a test case? A test case is constituted by a method by
a class which extends PHPUnit_Framework_TestCase, which as its name
tells is an abstract test case class provided by the PHPUnit framework.
When developing a object-oriented application, you may want to start with
one test case per every class you want to test (and if you're going
the TDD way every class will be tested), thus there will be a 1:1
correspondence between classes and test cases. For the moment, we don't
want to go too fast and we simply write a class that tests php common
functionality.
Every test is a method which by convention starts with the keyword
'test'. Also for convention, the method name should tell what operation the
system under test is capable, in this test .
Every method will be run independently in an isolated environment,
and will make some assertion on what should happen. assertTrue() is one
of the many assert*() method inherited from the abstract test case, which
declares the test failed if an argument different from true is passed to it.
The test as it is written now should pass. In fact, we can simply run it and
find out:

Practical Php Testing 13

[giorgio@Marty:~]$ phpunit MyTest.php
PHPUnit 3.4.0 by Sebastian Bergmann.

.

Time: 1 second

OK (1 test, 1 assertion)

Instant feedback is one of the pillars of TDD and of unit testing in
general: the code in tests should instance your classes and exercising their
functionality to ensure they don't blow up and respect the specifications.
With the phpunit script, it's very simple and fast to run a test case or a
group of them after you have made a change to your class and make sure
you haven't break an existing feature.
The result of phpunit run is easily interpretable: a dot (.) for every test
method which passed (without failed assertions), and a statistic of the
number of tests and assertions encountered.
Let's try to make it fail, changing 1==1 to 1==0:

[giorgio@Marty:~]$ phpunit MyTest.php
PHPUnit 3.4.0 by Sebastian Bergmann.

F

Time: 0 seconds

There was 1 failure:

1) MyTest::testComparesNumbers
Failed asserting that is true.

/media/sdb1/giorgio/MyTest.php:6

FAILURES!
Tests: 1, Assertions: 1, Failures: 1.

For every failed test, you get an F instead of the point in the summary.
Other letters can be encountered, for instance the E if the test caused no
assertion to fail but it raised an exception or a php error. The only passed
tests are the one which present a dot: you should strive for a long list of
dots that fill more than one row.
You also get a description of the assertion which has failed and in
what test case, method and line it resides. Since you can run many
test cases as a single command, this is very useful to localize defects and
regression.
This time the test has failed because it is bad written: zero is not equal to

14 Chapter 1: PHPUnit usage

one and php is right in giving out false. But assertTrue() does not know this
and in the next chapter we'll write some tests which works upon userland
code and it is in fact useful to detect if production classes are still
satisfying all their requirements.

TDD exercises
1.1 Suppose you have to code a class that calculates the factorial of an
integer N, which is the product of all integers from 1 to N. Write a failing
test for it (do not code the class for now! Only the test. Suppose that the
class and its methods already exists just like you want them to be.)

1.2 Add more test methods, which try different input numbers: 1, 4, 20.
Verify that different factorials are calculated correctly (again, just the tests
and no production code in this phase).

1.3 Write the production code needed to make all tests pass.

Practical Php Testing 15

Chapter 2: write clever tests
In the previous chapter, we have
discovered the syntax and the
infrastructure needed to run a test with
phpunit. Now we are going to show a
practical example using a test case -
production code couple of classes.
What we are going to test is the Spl class ArrayIterator; for the readers
that do not know this class, it is a simple Iterator implementation which
abstracts away a foreach on the elements of an array.
Of course it would be very useful to write the tests before the production
code class, but this is not the time to talk about TDD and its advantages:
let's simply write a few tests to ensure the implementation works as we
desire. This is also a common way to study the components of an
object-oriented system: read and understand its unit test and write
more of them to verify our expectations about the production classes
behavior are fulfilled.
Let's start with the simplest test case: an empty array.

class ArrayIteratorTest extends PHPUnit_Framework_TestCase
{
 public function testEmptyArrayIsNotIteratedOver()
 {
 $iterator = new ArrayIterator(array());
 foreach ($iterator as $element) {
 $this->fail();
 }
 }
}

The test case class is named ArrayIteratorTest, following the convention of
using a 1:1 mapping from production classes to test ones. The test method
simply creates a new instance of the system under test, setting up the
situation to have it iterate over the empty array. If the execution path
enter the foreach, the test fails, as the call to fail() is equivalent to
assertTrue(false).
The next step is to cover other possible situations:

 public function testIteratesOverOneElementArrays()
 {
 $iterator = new ArrayIterator(array('foo'));
 $i = 0;
 foreach ($iterator as $element) {

http://1.bp.blogspot.com/_8AyqsjOhFcI/SrtfDrKZniI/AAAAAAAAAEw/Lp0LBHcDJiQ/s1600-h/Screenshot.png

16 Chapter 2: write clever tests

 $this->assertEquals('foo', $element);
 $i++;
 }
 $this->assertEquals(1, $i);
 }

This test ensures that one-element numeric arrays are iterated correctly.
The first assertion states that every element which is passed as the
foreach argument is the element in the array, while the second that the
foreach is executed only one time. You have probably guessed that
assertEquals() confronts its two arguments with the == operator and fails
if the result is false.
When it is not too computational expensive, we should strive to have the
few possible assertions per method; so we can separate the test method
testIteratesOverOneElementArrays() in two distinct ones:

 public function testIteratesOverOneElementArraysUsingValues()
 {
 $iterator = new ArrayIterator(array('foo'));
 foreach ($iterator as $element) {
 $this->assertEquals('foo', $element);
 }
 }

 public function testIteratesOneTimeOverOneElementArrays()
 {
 $iterator = new ArrayIterator(array('foo'));
 $i = 0;
 foreach ($iterator as $element) {
 $i++;
 }
 $this->assertEquals(1, $i);
 }

Now the two test methods are nearly independent and can fail
independently to provide information on two different broken behaviors:
not using the array values and iterating more than one time on an
element. This is a very simple case, but try to think of this example of a
methodology to identify responsibilities of a production class: the
test names should describe what features the class provides at a good
level of specification (and they are really used for this purpose in Agile
documentation). This is what we are doing by adopting descriptive test
names and using a single assertion per test where it is possible:
broken up the role of the class in tiny pieces which together give the full
picture of the unit requirements.
We can go further and test also the use of ArrayIterator on associative

Practical Php Testing 17

arrays:

 public function testIteratesOverAssociativeArrays()
 {
 $iterator = new ArrayIterator(array('foo' => 'bar'));
 $i = 0;
 foreach ($iterator as $key => $element) {
 $i++;
 $this->assertEquals('foo', $key);
 $this->assertEquals('bar', $element);
 }
 $this->assertEquals(1, $i);
 }

As an exercise you can try to refine this method two three independent
ones, for instance creating the first of them with a name such as
testIteratesOverAssociativeArraysUsingArrayKeysAsForeachKeys(). Don't
worry about long method names as long as they are long to strengthen the
specification, but only when the code can be refactored to smaller test
methods. Even then, finding descriptive test names is the most difficult
part of the process.
We can go on and add other test methods, and Spl has many.

Whenever a bug is found which you can impute to the class under test,
you should add a test method which exposes the bug, and thus fails;
then you can fix the class to make the test pass. This methodology helps
to not reintroduce the bug in subsequent changes to the class, as a
regression test is in place. It also defines more and more the behavior of a
class by adding a method at the time.
The TDD methodology not only forces to add test methods to expose bug,
but also to define new features. Implementing a user story is done by first
writing a fail test which exposes the problem (the feature is not present at
the time in the class) and then by implementing it.

I hope you're liking this journey in testing and you're considering to test
extensively your code if you currently are not using phpunit or similar
tools. In the next chapter, we will make a panoramic the assertion
methods which phpunit provides to simplify the tester work. Remember
that, in software unit testing, developer and tester coincide, or at least are
at one next to the other, in the case of pair programming.

TDD exercises
2.1 What does happen to your class from 1.1 when you try to calculate

18 Chapter 2: write clever tests

the factorial of 0? (it is assumed by definition equal to 1.) Add a failing test
case.

2.2 Modify the production class to make all the tests pass.

Practical Php Testing 19

Code sample
<?php

class ArrayIteratorTest extends PHPUnit_Framework_TestCase
{
 public function testEmptyArrayIsNotIteratedOver()
 {
 $iterator = new ArrayIterator(array());
 foreach ($iterator as $element) {
 $this->fail();
 }
 }

/*
 * separate this method in two distinct ones express better the
intents of
 * this test case
 public function testIteratesOverOneElementArrays()
 {
 $iterator = new ArrayIterator(array('foo'));
 $i = 0;
 foreach ($iterator as $element) {
 $this->assertEquals('foo', $element);
 $i++;
 }
 $this->assertEquals(1, $i);
 }
*/

 public function testIteratesOverOneElementArraysUsingValues()
 {
 $iterator = new ArrayIterator(array('foo'));
 foreach ($iterator as $element) {
 $this->assertEquals('foo', $element);
 }
 }

 public function testIteratesOneTimeOverOneElementArrays()
 {
 $iterator = new ArrayIterator(array('foo'));
 $i = 0;
 foreach ($iterator as $element) {
 $i++;
 }
 $this->assertEquals(1, $i);
 }

 public function testIteratesOverAssociativeArrays()
 {
 $iterator = new ArrayIterator(array('foo' => 'bar'));
 $i = 0;

20 Chapter 2: write clever tests

 foreach ($iterator as $key => $element) {
 $i++;
 $this->assertEquals('foo', $key);
 $this->assertEquals('bar', $element);
 }
 $this->assertEquals(1, $i);
 }
}

Practical Php Testing 21

Chapter 3: assertions
Assertions are declarations that must hold
true for a test to be declared successful: a
test pass when it does not execute
assertions or the one called are all verified
correctly. Assertions are the final goal of a
test, the place where you confront the
expected and precalculated values of your variables with the ones that
come from the system under test.
Assertions are implemented with methods and you have to make sure
they are actually executed: thus, an if() construct inside a test is
considered an anti-pattern as test methods should follow only one possible
execution path where they find the assertions defined by the programmer.
There is also a assert() construct in php, used for enable checks on
variables in production code. The assertions used in tests are a little
different as they are real code (and not code passed in a string) and they
do not clutter the production code but constitute a valuable part of test
cases.
In phpunit there are some convenience methods which help to write
expressive code and do different kind of assertions. These methods are
available with a public signature on the test case class which is extended
by default.

The first assertion which fails causes an exception to be raised and
captured by phpunit runner. This means that if you are using an exception
per test you are safe, but if you are writing test methods which contain
multiple assertions, beware that the first failure will prevent the
subsequent assertions from being executed. Only the assert*() calls which
strictly depends on the previous ones to make sense should be placed in
the same method as them.
Here is a list of the most common assertions available in phpunit: since the
documentation is very good on this features I'm not going to go into the
details. Most important and widely used methods are evidenced in bold.

• assertTrue($argument) takes a boolean as a mandatory
parameter and make the test fail if $argument is not true. You must
pass to it a result from a method which returns booleans, such as a
comparison operator result. assertFalse($argument) presents the
inverse of this method behavior, failing if $argument is different

http://1.bp.blogspot.com/_8AyqsjOhFcI/Sry385hb7oI/AAAAAAAAAE4/8kKTu5Pltm4/s1600-h/Screenshot-assertions.png

22 Chapter 3: assertions

from false.

• assertEquals($expected, $actual) takes two arguments and
confront them with the == operator, declaring the test failed if they
do not match. The canned result should be put in the $expected
argument, while the result obtained from the system under test in
the $actual one: they will be shown in this order if the test fails,
along with a comparison of the arguments dumps when applicable.
assertNotEquals() is this method's opposite.

• assertSame($expected, $actual) does the identical job of
assertEquals(), but comparing the arguments with the ===
operator, which checks also the equality of variable types along with
their values.

• assertContains($needle, $haystack) searches $needle in
$haystack, which can be an array or an Iterator implementation.
assertNotContains() can also be very handy.

• assertArrayHasKey($key, $array) evals if $key is in $array. It is used
for both numeric and associative ones.

• assertContainsOnly($type, $haystack) fails if $haystack contains
element whose type differs from $type. $type is one of the possible
result from gettype().

• assertType($type, $variable) fails if $variable is not a $type.
$type is specified as in assertContainsOnly(), or with PHPUnit types
constants.

• assertNotNull($variable) fails if $variable is the special value null.

• assertLessThan(), assertGreaterThan(),
assertGreatherThanOrEqual(), assertLessThanOrEquals() perform
verifications on numbers and their names are probably self
explanatory. They all take two arguments.

• assertStringsStartsWith($prefix, $string) and
assertStringsEndsWith($suffix, $string) are also self explanatory and
section a string for you, avoiding the need for substr() magic in a
test.

Remember that you can still make up nearly any assertion by calling a
verification method and pass the result to assertTrue(). Moreover, nearly
everyone of this methods support a supplemental string parameter named
$message, which will be shown in the case of a failing test caused by the
assertion; if you're making up a complex method for a custom assertion
you may want to provide $message to assertTrue() to provide information
in case the production code regress. Obviously, the custom assertion

Practical Php Testing 23

methods should be tested too.

I think you will start soon to use the more expressive assertions for what
you are testing for: test methods should be short and easily
understandable, and assertion methods which abstract away the
verification burden are very beneficial. In the next parts, we'll dig into
ways to reuse test code and in the annotations which phpunit recognizes
to drive our test execution, such as @dataProvider and @depends.

TDD exercises
3.1 Write tests for a class which takes a single argument in the
constructor and gives it back when a getter is called (assertSame() or
assertEquals()?), then write the production class.

3.2 Write tests for the sort() php function, for simplicity with integer
arrays as data.

24 Chapter 3: assertions

Code sample
<?php

class AssertionsTest extends PHPUnit_Framework_TestCase
{
 public function
testAssertionsMethodsWorksWithCorrectArguments()
 {
 $this->assertTrue(1 == 1);
 $this->assertTrue(true);
 $this->assertFalse(false);
 $this->assertFalse(0 == 1);

 $this->assertEquals('foo', 'foo');
 $this->assertEquals(1, "1");
 $this->assertNotEquals(1, 2);
 $this->assertSame(1, 1);
 $this->assertNotSame(1, "1");

 $this->assertContains('foo', array('foo', 'otherValue'));
 $this->assertContains('foo', new
ArrayIterator(array('foo', 'otherValue')));
 $this->assertNotContains('foo', array('otherValue'));
 $this->assertContainsOnly('string', array('foo',
'otherValue'));

 $this->assertArrayHasKey(0, array('foo'));
 $this->assertArrayHasKey('foo', array('foo' => 'bar',
'otherValue'));
 }
}

Practical Php Testing 25

Chapter 4: fixtures
In the previous parts, we have explored how
to install phpunit and how to write tests
which exercise our production code. Also we
have learned to use the assertion methods
to check the actual results: now we are
ready to improve the test code from a
refactoring point of view, and to take
advantage of phpunit features.
While writing more and more test methods, you can notice that you follow
a common pattern, commonly known as arrange-act-assert; this is the
main motif of state based testing.
The first operation in a test is usually to set up the system under test,
being it an object or a complex object graph; then the methods of the
object are called during the act part and some assertions (hopefully not
more than one) are done on the results returned from these calls. In some
cases, when you have allocated external resources like a fake database, a
final cleaning up phase is needed.
What you will actually discover is that often part of the arrange phase
and the final cleanup code are shared between test methods: for
example in case you are testing a single class, the instantiation of an
object is a simple operation you can extract from the test methods. To
support this extraction, phpunit (and all xUnit frameworks) provide the
setUp() and tearDown() template methods.
These methods are executed respectively before and after every test
method: default implementations are provided in
PHPUnit_Framework_TestCase with an empty body. You can override this
empty methods when useful, to have arrange/cleanup code to be shared
between tests in the same test case and prepare a known state before
every run. This known state is called a fixture.
Your test case class can go from this:

<?php
class ArrayIteratorTest extends PHPUnit_Framework_TestCase
{
 public function testSomething()
 {
 $iterator = new ArrayIterator(array('a', 'b', 'c'));
 // act, assert...
 }

 public function testOtherFeature()

http://3.bp.blogspot.com/_8AyqsjOhFcI/Sr39z-IIr_I/AAAAAAAAAFA/yudAO-W-s6w/s1600-h/Screenshot-fixtures.png

26 Chapter 4: fixtures

 {
 $iterator = new ArrayIterator(array('a', 'b', 'c'));
 // act, assert...
 }
}

to this:

<?php
class ArrayIteratorwithFixtureTest extends
PHPUnit_Framework_TestCase
{
 private $_iterator;

 public function setUp()
 {
 $this->_iterator = new ArrayIterator(array('a', 'b',
'c'));
 }

 public function testSomething()
 {
 // act on $this->_iterator, assert...
 }

 public function testOtherFeature()
 {
 // act on $this->_iterator, assert...
 }
}

Observe that, since an object of this class will be created to run the test,
you can conserve every variable you want as a private member, and then
have a reference to it available in the test method. setUp() usage provides
a cleaner and dont-repeat-yourself solution, and saves many lines of code
when many test methods are needed.

Here is some know-how on using fixtures:

• usually the tearDown() method should not be provided since
the fixture is an object graph and will be garbage-collected after all
the tests are executed, or overwritten by the next setUp() call. Thus,
the empty body provided by default is often enough.

• the fixture methods are executed for every test, so the test
methods have the same state as a starting point. When more
than one fixture is requested, the common practice is to break down
the test case, preparing more than one test case class for the
system under test; these classes represents different scenarios and

Practical Php Testing 27

together constitutes the overall test suite for this system.

• sharing a fixture between test cases can be a smell for a bad
design, since they are not insulated enough and classes know too
much of each other. This cannot be done with setUp() methods
however, but there are suite-level setup available in phpunit if you
must share a fixture. However, keep in mind that you probably can
refactor your classes to improve the maintainability of the
application and of its test suite.

• setUpBeforeClass() and tearDownAfterClass() are two hooks
(static methods) which are executed before a test case methods are
considered and after the overall process is finished. They are the
equivalent of setUp() and tearDown(), but at the test case level
instead of the test method one.

• finally, assertPreConditions() and assertPostConditions() are
two methods executed before and after the a test method. They
differ from setUp() and tearDown() since they are executed only if
the test did not already fail and they can halt the execution with a
failing assertion. setUp() and tearDown() should never throw
exceptions and they are executed anyway, unconcerned by the
current test outcome.

This is all you must know on test fixtures to start experimenting with them.
I hope your test code will be much more well written after introducing
setUp().
In the next chapter, we'll explore the annotations that can influence
phpunit test runner, like @depends and @dataProvider.

TDD exercises
4.1 Write a class Sorter that wraps the sort() native function and returns
an ordered integer array without touching the original. Start with some
tests before writing a single line of production code.

4.2 How many new do you have in the test case? Refactor till you have
only one object creation.

28 Chapter 5: annotations

Chapter 5: annotations
Now that we have learned much about
writing tests (with or without fixtures) and
using assertions, we can improve our
tests further by exploiting phpunit
features. This awesome testing tool
provides support for several annotations
which can add behavior to your test case
class without making you write boilerplate code. Annotations are a
standard way to add metadata to code entities, such as classes or
methods, and are composed by a @ tag followed by zero, one or more
arguments. While the parsing implementation is left to the tool which will
use them, their aspect is consistent: phpDocumentor also collects @param
and @return annotations to describe an Api.
Remember that annotations must be placed in docblock comments as in
the php engine there is no native support for them: phpunit extracts them
from the comment block using reflection.

While writing an Api or also a simple class, the corner cases and incorrect
inputs have to be taken into consideration. The standard way to manage
errors and bad situations in an oop application is to use exceptions. But
how to test that a method raises an exception when needed? Of
course the normal behavior is tested with real data that returns a real
result. For the exceptional behavior, we can start with this test method:

 public function testMethodRaiseException()
 {
 try {
 $iterator = new ArrayIterator(42);
 $this->fail();
 } catch (InvalidArgumentException $e) {
 }
 }

The purpose of this code is to raise an exception by passing invalid data to
the constructor of ArrayIterator, which requires an array. If the exception is
raised accordingly, it bubbles up to the end of the try block and it is
catched correctly, making the test pass. If the exception is not thrown, the
call to fail() declares the test failed.
However, this paradigm will be repeated very often everytime you need to
test an exception and so it can be abstracted away. Also, this code does

http://1.bp.blogspot.com/_8AyqsjOhFcI/SsCixtYsv2I/AAAAAAAAAFI/g1GtMBiHx-c/s1600-h/Screenshot-annotations.png

Practical Php Testing 29

not convey the intent of testing an exception since it is cluttered with
details like an empty catch block and calls to fail().
Phpunit already abstracts away this code providing an annotation,
@expectedException, which has to be put in the method docblock:

 /**
 * @expectedException InvalidArgumentException
 */
 public function testMethodRaiseExceptionAgain()
 {
 $iterator = new ArrayIterator(42);
 }

This code is much more clear than the constructs we used earlier. The only
code present in the method is the one required to throw the exception,
while the intent is described in the method name and in its annotations.

Another common repetition is testing a method with different kind of
inputs, while executing always the same code. This is commonly resolved
with a loop:

 public function testBooleanEvaluationInALoop()
 {
 $values = array(1, '1', 'on', true);
 foreach ($values as $value) {
 $actual = (bool) $value;
 $this->assertTrue($actual);
 }
 }

But phpunit can do the loop for you, taking advantage of the
@dataProvider annotation:

 public static function trueValues()
 {
 return array(
 array(1),
 array('1'),
 array('on'),
 array(true)
);
 }
 /**
 * @dataProvider trueValues
 */
 public function testBooleanEvaluation($value)
 {
 $actual = (bool) $value;
 $this->assertTrue($actual);
 }

30 Chapter 5: annotations

This annotation should be followed by the name of a static method in the
test case which returns an array of data sets to be passed to the test
method. Phpunit will iterate over this array and using each one of its
elements (which will be an array containing the arguments) to run the test
method, telling you which data set was in use in case of a test failure. Of
course you can put anything in the data sets: input for the SUT or
expected result, or both.
The code becomes a bit longer, but the expressivity of defining the
concept of different data sets in a standard way are worth considering.

The last common situation we will look at today is test dependency.
Again, we are talking about dependency beneath the same test case since
interdependencies between unit tests are a small of high coupling and
should be raise suspects about your classes design.
It happens often that some test methods are more specific than the first
you wrote and they will obviously fail if the formers do. The classic
example is the add()/remove() tests on a container: to make sure remove()
works you have to use add() for the arrange part of the test method.
Phpunit solve this common problem of logic and temporal precedence
(I won't present a workaround like in the other cases since it was not
possible to solve this issue before phpunit 3.4 introduced @depends):

 public function testArrayAdditionWorks()
 {
 $array = array();
 $array[0] = 'foo';
 $this->assertTrue(isset($array[0]));
 return $array;
 }

 /**
 * @depends testArrayAdditionWorks
 */
 public function testArrayRemovalWorks($fixture)
 {
 unset($fixture[0]);
 $this->assertFalse(isset($fixture[0]));
 }

Not only testArrayAdditionWorks() is executed before
testArrayRemovalWorks(), but since it returns something, this result is
passed as an argument to the dependent method. If the former test fails,
however, the dependent ones are marked as skipped as they will fail
anyway by definition. They will clutter the output too, while it is clear that
the functionality that needs repairment is the array addition.

Practical Php Testing 31

I hope this standard phpunit annotations can help you enjoy writing tests
for your php classes, leaving you the exciting work and taking off the
boring one. In the next parts, we'll look at refactoring for test code before
taking a journey with stubs and mocks.

TDD exercises
5.1 Refactor the tests from 4.2 using the @dataProvider annotation.

5.2 Write tests for a Collection class which stores objects, and has the
methods add(), contains() and remove(). Where you should put @depends
annotations?

5.2 Implement the Collection class.

32 Chapter 5: annotations

Code sample
<?php

class AnnotationsTest extends PHPUnit_Framework_TestCase
{
 public function testMethodRaiseException()
 {
 try {
 $iterator = new ArrayIterator(42);
 $this->fail();
 } catch (InvalidArgumentException $e) {
 }
 }

 /**
 * @expectedException InvalidArgumentException
 */
 public function testMethodRaiseExceptionAgain()
 {
 $iterator = new ArrayIterator(42);
 }

 public function testBooleanEvaluationInALoop()
 {
 $values = array(1, '1', 'on', true);
 foreach ($values as $value) {
 $actual = (bool) $value;
 $this->assertTrue($actual);
 }
 }

 public static function trueValues()
 {
 return array(
 array(1),
 array('1'),
 array('on'),
 array(true)
);
 }
 /**
 * @dataProvider trueValues
 */
 public function testBooleanEvaluation($value)
 {
 $actual = (bool) $value;
 $this->assertTrue($actual);
 }

 public function testArrayAdditionWorks()
 {

Practical Php Testing 33

 $array = array();
 $array[0] = 'foo';
 $this->assertTrue(isset($array[0]));
 return $array;
 }

 /**
 * @depends testArrayAdditionWorks
 */
 public function testArrayRemovalWorks($fixture)
 {
 unset($fixture[0]);
 $this->assertFalse(isset($fixture[0]));
 }
}

34 Chapter 6: refactoring and patterns

Chapter 6: refactoring and patterns
In the xUnit world, tests are code. While there are testing
tools which treats tests as data, phpunit and companions
recognize classes and objects: this means that they are
first class citizens and there should be no distinction in
importance between production and test code.

Why it is important to refactor production code? To
improve maintainability and ensure that changes

which break the system appear less often. The same can be said for the
tests: a suite that embrace change and is maintainable will make the
developers actually use it, from the start to the long run. While the focus is
usually on production code refactoring, today we will talk about test
refactoring and the patterns where you should head to.
The worst thing that can happen is having an outdated test suite which
fails because it is not maintained with production code: it will quickly lose
credibility and thus it will be run sparingly, and then forgotten.
One of the best methodologies to improve production code maintainability
is to test it: the more easy to test is a class, the more decoupled and
maintainable it becomes. You will often find yourself refactoring a
production class to simplify testing, for instance making Demeter happy,
resulting in the application to have a simpler design.
Following our duality of production and test code, sometimes test methods
and test cases grow and present a lot of repetition. What can be done to
avoid these problems and maintain an agile (with the lowercase a) test
suite is to refactor test code towards some patterns, some of them
you already started to grasp in the previous chapters of this book. Test
code has often a low complexity compared to production code: it runs in
an isolated environment, with nearly no state to maintain, with very
decoupled classes (the test cases) and the help of a framework. Thus, it's
tempting to use a lot of copy&paste to write tests, but knowing a bunch of
patterns can flatten even tests little complexity and help you avoid
duplication. As all patterns, they have been catalogued and given a
standard name.

• Standard Fixture and Fresh Fixture reuse the code which builds
fixtures for the tests (and not the fixture itself). This pattern can be
implemented with phpunit setUp() method.

• Shared Fixture reuse the same object graph for a set of tests:

http://www.amazon.com/gp/product/0131495054?ie=UTF8&tag=invistotheeye-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0131495054

Practical Php Testing 35

obviously it should have no state or a way to reach a particular state
for testing purposes. This pattern can be implemented with phpunit
setUpBeforeClass() method.

• Four Phase Test is the classical motif of a test method: arrange,
act, assert and the optional teardown.

• Test Runner and Test Suite Object are pattern which phpunit
implements for you. You can then specifiy metadata to alter the
building of a test suite or execution options, or specifical annotations
which the runner supports.

• State Verification is the simplest way of using phpunit and it's
what we have done until now, writing assertions on explicit results
of the system under test. Behavior Verification is based on
making assertiong on indirect results, like method calls on
collaborators and will be treated in the next chapters; Mock and
Stub are patterns used in Behavior Verification, and phpunit
provides support for their dynamic creation.

• Table Truncation Teardown and Transaction RollBack
TearDown are standard patterns for testing components which
interact with a database.

• Literal, Derived and Generated Value are patterns to provide
fake data to the system under test. They all have their place in unit
testing, depending on the unit purpose.

If you are interested in learning more about patterns you should check out
the book xUnit Test Patterns: Refactoring Test Code and its website (http://
xunitpatterns.com/index.html), which is a very complete guide to probably
every single testing construct that has been explored in the xUnit
frameworks so far. On the website you can find description and usage
examples of all the patterns described here and of other specific ones.
Moreover, remember that test code is still code and the basic
refactorings like Extract Method, Extract Superclass, Introduce Explaining
Variable etc. are valid also in the testing land. Simply refactor some
boilerplate code in private methods of a test case can save you the boring
job of updating duplicated blocks.

As a side note, remember that when refactoring production code you have
the safety net of the test suite, that will tell you when you have just broke
something. No one tests the tests, however, and so you may want to
temporarily break the behavior under test before refactoring a
method or a test case. Simply altering the return statements of

http://xunitpatterns.com/index.html
http://xunitpatterns.com/index.html

36 Chapter 6: refactoring and patterns

production methods can make the test fail so you can control that it
continue to fail after the refactoring. When writing the original test, the
TDD methodology crafts the method even before the production code
exists and this is one of the main reason why the test is solid; a test is
valid if it's able to find problems in the production code: that is, failing
when it should fail.

I hope this book is becoming interesting as now you have learned your
tests have the same importance of the production code. They can even be
more important: if I have to choose between throwing away the production
code and its documentation, and losing a good test suite, I will definitely
throw away the first. It can be rewritten using the tests, while writing a
complete test suite of an application without any tests is an harder task.
In the next parts, we'll enter the world of Test Doubles and of behavior
verification, taking advantage of Mocks, Stubs, Fakes and similar patterns.

TDD exercises
6.1 Refactor the tests you have written in the previous parts to
eliminate duplication, introducing creation methods and ensuring the
four/three phases of tests are identifiable.
6.2 Use the Pdo Sqlite driver to implement Table Truncation TearDown
for a small test database (one table will suffice). You should use the
tearDown() method to empty the table.

Practical Php Testing 37

Chapter 7: stubs
The name Unit testing explains the most
special and powerful characteristic of this
type of testing: the granularity of
verifications is taken to the class size,
which is the smallest cohesive unit we
can find in an object-oriented application.
Despite these good intentions, tests often cross the borders of the
single class because the system under test is constituted by more than
one object: the main one which methods are called on (to verify the results
returned with assertions) and its collaborators.
This is expected as no object is an island: there are very few classes which
work alone. While we can skip the middle man on the upper side by calling
methods directly on the system under test, there's no trivial way to wire
the internal method calls to predefined result.
However, it's very important to find a way for insulating a class from its
collaborators: while a small percentage of functional tests (which exercise
an object graph instead of a single unit) are acceptable and required in a
test suite, the main concern of a test-infected developer should be to have
the most fine-grained test suite of the country:

• tests are very coupled to the production code, in particular to
the classes which they use directly. It's a good idea to limit this
coupling to the unit under test as much as possible;

• the possible interactions with a single object are a few, but
integrating collaborators raises the number of situations that can
happen very quickly;

• the collaborators could be very slow (relying on a database or
querying a web service) or not even worth testing because it is not
our responsibility;

• finally, if a collaborator breaks, not only its tests will fail but
also the tests of the classes which use it. The defect could then be
hard to locate.

In short, every collaborator introduced in the test arrangement is a step
towards integration testing rather than unit testing. However, don't take
this advice as a prohibition: many classes (like Entities/newables, but
also infrastructure ones like an ArrayIterator) are too much of an
hassle to substitute with the techniques described later in this post. You

http://1.bp.blogspot.com/_8AyqsjOhFcI/SsNcBIZDdFI/AAAAAAAAAFY/WrK6amAkoww/s1600-h/Screenshot-stubs.png

38 Chapter 7: stubs

should definitely instantiate User and Group in tests of service classes
which acts on them.

The verb substitute is appropriate: the only way to keep out collaborators
from a unit test is to replace them with other objects. These objects are
commonly known as Test Doubles and they are subclasses or alternative
implementations respectively of the class or interface required by the SUT.
This property allows them to be considered instanceof the original
collaborator class/interface and to be kept as a field reference or to be
passed as a method parameter, which are the only ways I can think of to
recognize a collaborator.
Dependency Injection plays a key role in many unit tests: in the case
of a field reference on a class, there is the need to replace this reference
with the Test Double one, to hijack the method calls on the collaborator
itself. Since field references are usually private, it is difficult to access
them (requiring reflection) and violating a class encapsulation to simplify
testing does not seem a good idea.
Thus, the natural way to provide Test Doubles for collaborators is
Dependency Injection, being it implemented via the constructor or via
setters. Instead of instantiating the production class, simply produce an
object of its custom-made subclass and use it during the construction of
the SUT. My SUTs usually have optional constructor parameters to allow
passing in a null when the collaborator is not needed at all.

While entering the Test Doubles world, the average programmer hears
many terms which describes substitutes of an object's collaborators. In
crescent order of complexity, they are:

• Dummies: object which do not provide any interaction, but are
placeholders used to satisfy compile-time dependencies and to
avoid breaking the null checks: no method is called on them but
they are likely to be required parameters of a SUT method or part of
its constructor signature. To avoid the creation of dummies I prefer
to keep all constructor parameters optional, trusting that the Factory
which creates the object passes regular collaborators instead of null
values.

• Stubs: objects where some methods have been overridden to return
canned results. They may have more than one precalculated result
available, depending on the method parameters combination, but
these variables are known values once you reach the act part of the
test method.

Practical Php Testing 39

• Mock objects: also known as Test Spies, mock objects are used in a
testing style different from what we have worked on since the first
chapter of this book (behavior based testing). They will be the main
argument of the next episode.

• Fakes: objects which have a working implementation, but much
simpler than the real collaborator one. An in-memory ArrayObject
which substitutes a database result Iterator is an example of a Fake.

You generally don't need to write a Dummy object since there is no
interaction with it: the real collaborator can be used instead if its
constructor is thin. A Fake is a running implementation so if an already
existing class cannot work, there's usually no other choice than write a real
subclass and reusing it in all the tests that require the collaborator.
For Stubs and Mocks the situation is different: there are plenty of
frameworks for nearly every language which provide help in generating
them, which take care of evaluating the subclass code and instantiating an
object. Phpunit incorporates a small mocking framework, accessible
through the method getMock() on the test case class. Remember that
while the method is named getMock(), both Stubs and Mocks can be
created via this Api. In this chapter we'll focus again on state verification
and we'll use a Stub to improve the granularity of a test.

We are going to give a meaningful example of unit testing using a
Stub. In this example, a GeolocationService takes a User object and fills its
latitude and longitude fields using the location specified.
GeolocationService requires an instance of a fictional GoogleMaps object
to work, and since we all love Dependency Injection it is passed in its
constructor.
Note that GoogleMaps can also be an interface or a base abstract class:
there is no technical difference. Moreover, if it was a less important
collaborator it can even be passed as a locate() parameter.
This is the test case:

class GeolocationServiceTest extends PHPUnit_Framework_TestCase
{
 public function testProvidesLatitudeAndLongitudeForAnUser()
 {
 $coordinates = array('latitude' => '42N', 'longitude' =>
'12E');
 $googleMapsMock = $this->getMock('GoogleMaps',
array('getLatitudeAndLongitude'));
 $googleMapsMock->expects($this->any())
 ->method('getLatitudeAndLongitude')
 ->will($this->returnValue($coordinates));

40 Chapter 7: stubs

 $service = new GeolocationService($googleMapsMock);
 $user = new User;
 $user->location = 'Rome';
 $service->locate($user);
 $this->assertEquals('42N', $user->latitude);
 $this->assertEquals('12E', $user->longitude);
 }
}

Note that I have created a Stub only for the external service and not for
the User class. The former is external, slow, and unpredictable, but the
latter is simple, with little or none internal behavior, and there's a small
chance it will break. Nothing behaves like a String more than a String, as
Misko Hevery says. The test method now focuses on exercising the locate()
method and not also the GoogleMaps class.

Finally, let's take a look at the getMock() Api:

object getMock($originalClassName, [array $methods, [array
$arguments,

[string $mockClassName, [boolean $callOriginalConstructor,

[boolean $callOriginalClone, [boolean $callAutoload]]]]]])

$originalClassName is the name of the class you want to create a
Stub/Mock for. $methods is a numeric indexed array containing the names
of the methods you want to subclass; if left empty, every method will be
substituted. $arguments are arguments to pass to the constructor of the
original class (almost never used), while $mockClassName is a custom
name for the subclass created.
The last three arguments are boolean values used to determine if leaving
the original constructor or clone method, or to allow autoloading of
$originalClassName. They default to true. Often you want to set
$callOriginalConstructor to false if its signature requires other
collaborators to be passed in. All arguments but the first one are optional.
The mock produced, along with the original class methods, also has the
expects() one available. For now, simply calling it with the argument $this-
>any() will do the job. This method returns a
PHPUnit_Framework_MockObject_Builder_InvocationMocker instance; in
short, an internal object that you can call method() and will() on to decide
the method name to replace and its predefined behavior. The simplest
possible behavior is $this->returnValue(...), but also $this-
>returnArgument($argumentNumber) is available, along with $this-

Practical Php Testing 41

>returnCallback($callbackName); refer to the phpunit documentation for
supplemental informations.

I hope this introduction to Stub objects has helped you grasping the
essence of Unit testing in php. Feel free to ask clarifications in the
comments. In the next chapter of this book, we will explore the
possibilities of Mock objects and behavior based testing.

TDD exercises
7.1 Write an infinite FibonacciIterator that returns the Fibonacci series
and test it. The Fibonacci series is 0, 1, 1, 2, 3, 5, 8... every term is the
sum of the two previous ones.
7.2 Write a EvenIterator which takes a FibonacciIterator an iterates only
on the even-indexed values (returning 0, 1, 3, 8, 21...).
7.3 Write tests for the EvenIterator class, stubbing out the
FibonacciIterator using an ArrayIterator in substitution, which is provided
by the Spl (otherwise it will never terminate!)
7.4 Write a class that uses HTTP_Client Pear package to check a list links
and find out which are broken (404 error). Start with testing it without
instancing the real HTTP_Client class by stubbing it.

42 Chapter 7: stubs

Code sample
<?php

/**
 * For brevity I use public fields instead of getters and setters.
 */
class User
{
 public $location;
 public $latitude;
 public $longitude;
}

class GoogleMaps
{
 public function getLatitudeAndLongitude($location)
 {
 // some obscure network code to contact maps.google.com
 // ...
 return array('latitude' => $someValue, 'longitude' =>
$someOtherValue);
 }
}

class GeolocationService
{
 private $_maps;

 public function __construct(GoogleMaps $maps)
 {
 $this->_maps = $maps;
 }

 public function locate(User $user)
 {
 $location = $user->location;
 if ($location === null) {
 $location = 'Milan';
 }
 $coordinates = $this->_maps-
>getLatitudeAndLongitude($location);
 $user->latitude = $coordinates['latitude'];
 $user->longitude = $coordinates['longitude'];
 }
}

class GeolocationServiceTest extends PHPUnit_Framework_TestCase
{
 public function testProvidesLatitudeAndLongitudeForAnUser()
 {
 $coordinates = array('latitude' => '42N', 'longitude' =>

Practical Php Testing 43

'12E');
 $googleMapsMock = $this->getMock('GoogleMaps',
array('getLatitudeAndLongitude'));
 $googleMapsMock->expects($this->any())
 ->method('getLatitudeAndLongitude')
 ->will($this->returnValue($coordinates));
 $service = new GeolocationService($googleMapsMock);
 $user = new User;
 $user->location = 'Rome';
 $service->locate($user);
 $this->assertEquals('42N', $user->latitude);
 $this->assertEquals('12E', $user->longitude);
 }
}

44 Chapter 8: mocks

Chapter 8: mocks
In the previous chapter of this book,
we have listed the various types of
Test Doubles along with the ones
that phpunit can easily generate:
Stubs and Mocks. The latter are
utilized in a different kind of testing than the one presented so far:
behavior verification.

The behavior verification testing style differs from the state verification
one in the subjects of the assertion methods. While state verification
specifies explicit assertion methods to be called upon a test result,
behavior verification is focused on checking the actions the system under
test undertakes. These actions comprehend which methods it calls,
and how many times it does so; but also the parameters it passes to
these methods and their order.
The standard interaction with collaborators in object-oriented systems
consists of method calls. This kind of testing prescribes to place assertions
directly in the overridden methods of Test Doubles, or at the end of every
test, to verify that the SUT behavior conforms to specifical rules. These
Test Doubles, which can run assertions on their methods parameters, are
called Mock Objects (or simply Mocks). The contraposition here is with
Stubs, which extend the capabilities of a state based testing but do not
make any assumption on method calls or parameters.
Note that the assertions on parameters are placed inside the generated
methods, while assertions on method calls are executed by phpunit after
the test has run. This means that in a pure behavior verification test you
won't find any assert*() calls, which perform state verification.

Now we are going to rewrite the unit test of the previous chapter taking
advantage of phpunit mocks generation, but with a mixed approach which
contains also explicit assertions. The test was about verifying that the
GeolocationService class made use of a GoogleMaps collaborator to find
out the latitude and longitude of an User object, and the key characteristic
was insulation of the test from the GoogleMaps real implementation with a
Test Double. You can find the Stub example at the end of the previous
chapter.

class GeolocationServiceWithMocksTest extends

http://2.bp.blogspot.com/_8AyqsjOhFcI/SsSMB-N4fOI/AAAAAAAAAFg/TOWhBY0NN9A/s1600-h/Screenshot-mocks.png

Practical Php Testing 45

PHPUnit_Framework_TestCase
{
 public function testProvidesLatitudeAndLongitudeForAnUser()
 {
 $coordinates = array('latitude' => '42N', 'longitude' =>
'12E');
 $googleMapsMock = $this->getMock('GoogleMaps',
array('getLatitudeAndLongitude'));
 $googleMapsMock->expects($this->once())
 ->method('getLatitudeAndLongitude')
 ->with('Rome')
 ->will($this->returnValue($coordinates));
 $service = new GeolocationService($googleMapsMock);
 $user = new User;
 $user->location = 'Rome';
 $service->locate($user);
 $this->assertEquals('42N', $user->latitude);
 $this->assertEquals('12E', $user->longitude);
 }
}

The test is actually very similar to the Stub one, but there are some
differences:

• the expect() method of the mock returns an expectation object with
a fluent interface we can work with. However, this time a matcher
is passed which specifies how many times the mocked
method should be called. In the Stub example, the matcher used
is $this->any(), that does not run any assertions on the number of
calls at the end of the test. Other available matchers are $this-
>never() and $this->exactly($number). The power of the matchers
used in xUnit frameworks is they augment the test's code
readability, making it similar to plain English.

• On the expectation object, along with will() and method(), we are
also calling with() to specify the parameter we want to check
as passed to getLatitudeAndLongitude(). If we wanted to check more
parameters as exact values, we would pass an array to with()
containing the actual list. However, we can make also weak
assertions by using constraints objects, like $this-
>attributeEqualTo($name, $value) or $this-
>isInstanceOf($className), or maybe $this->anything() if no
assertion has to be made on a particular parameter.

• There is no formal definition that says Mocks can't return canned
results, as this is often mandatory for the code flow and to complete
the test successfully. Though, if you TDD the system under test

46 Chapter 8: mocks

using mocks without predefined results, it's likely that you will
produce a class with a different programming style which works with
those tests, and uses mocks very effectively.

• Whenever you write a with() call or a matcher in expects(), be
aware you are building a Mock and not a Stub.

You can find the complete, running test case at the end of the chapter. I
tried to include complete examples in this book to show the practical side
of testing instead of tips which are great in theory, but fail to apply in a
real situation.

After this example of behavior verification, which makes use of the most
advanced phpunit features, we are ready to explore the code coverage
features in the next chapter.

TDD exercises
8.1 Write tests for a class PermissionReader that has a __toString()
method which produces a human readable string, containing the
permissions of a SplFileInfo which is passed to it in the constructor. No
actual file should be used, only mocks (you can use actual files to learn
about Spl api but they should not be present in the final production code
and unit tests).

Practical Php Testing 47

Code sample
<?php

/**
 * For brevity I use public fields instead of getters and setters.
 */
class User
{
 public $location;
 public $latitude;
 public $longitude;
}

class GoogleMaps
{
 public function getLatitudeAndLongitude($location)
 {
 // some obscure network code to contact maps.google.com
 // ...
 return array('latitude' => $someValue, 'longitude' =>
$someOtherValue);
 }
}

class GeolocationService
{
 private $_maps;

 public function __construct(GoogleMaps $maps)
 {
 $this->_maps = $maps;
 }

 public function locate(User $user)
 {
 $location = $user->location;
 if ($location === null) {
 $location = 'Milan';
 }
 $coordinates = $this->_maps-
>getLatitudeAndLongitude($location);
 $user->latitude = $coordinates['latitude'];
 $user->longitude = $coordinates['longitude'];
 }
}

class GeolocationServiceWithMocksTest extends
PHPUnit_Framework_TestCase
{
 public function testProvidesLatitudeAndLongitudeForAnUser()
 {

48 Chapter 8: mocks

 $coordinates = array('latitude' => '42N', 'longitude' =>
'12E');
 $googleMapsMock = $this->getMock('GoogleMaps',
array('getLatitudeAndLongitude'));
 $googleMapsMock->expects($this->once())
 ->method('getLatitudeAndLongitude')
 ->with('Rome')
 ->will($this->returnValue($coordinates));
 $service = new GeolocationService($googleMapsMock);
 $user = new User;
 $user->location = 'Rome';
 $service->locate($user);
 $this->assertEquals('42N', $user->latitude);
 $this->assertEquals('12E', $user->longitude);
 }
}

Practical Php Testing 49

Chapter 9: command line options
Optimizing a test suite by adding test
methods and test cases can be useful to
improve the quality of your application
code. Yet, every optimization starts with
a profiling phase, that tells you where
there is a need for test cases and where
there is already a good coverage.
Code coverage is defined as the ratio of
lines of code exercised by the unit tests
to the overall number of lines; the same
ratio can be calculated using code

blocks as the unit of measure.
Phpunit provides code coverage reports generation via command line
switches: one of them is --coverage-html $directory which places a
human-readable html report in the $directory specified. There are other
formats available, such as Xml, created for the purpose of interpreting a
report with a third party application.
Please note that phpunit code coverage features require the xdebug
extension to work.

Another useful switch is the --configuration $file one. $file should be an
xml configuration file that tells phpunit what files have to be considered as
containing test cases. This is very handy to compose a suite and can
substitute the famous and hard to mantain AllTests.php files.
Here is a simple example for a configuration file:

<phpunit>
 <testsuite name="Ossigeno Test Suite">
 <directory suffix="Test.php">tests/</directory>
 <directory
suffix="Test.php">application/modules</directory>
 </testsuite>
</phpunit>

Running phpunit with this switch, instead of specifying a particular file, will
force the runner to consider all php files which name ends in "Test.php" in
the directories tests/ and application/modules/. While running a single test
case gives as output a line of dots, running all these tests in sequence will
result in multiple lines and in a list of all failed tests (although you can
require the list of skipped and incomplete tests by using the --verbose

http://xdebug.org/
http://www.atlassian.com/software/clover/
http://3.bp.blogspot.com/_8AyqsjOhFcI/SsXJXb62EBI/AAAAAAAAAFo/VqBZ-2EE7dc/s1600-h/Screenshot-coverage.png

50 Chapter 9: command line options

switch) in the overall list generated according to the configuration.

Along with the --configuration option, I strongly suggest to use the
--bootstrap $phpScript directive. Your test cases probably need a global
bootstrap phase for autoloading and setting up the include_path or other
options. In some old versions of phpunit, you had to include a
require_once() call at the start of each test script to make sure it was
executed before the test. Now you can simply tell phpunit to run a file of
your choice before starting with the test phase.

Running an entire suite is a good practice to discover if your changes or
refactorings have broken some functionalities. However, it's an overkill if
you have to do it very often, like in a short feedback cycle for TDD:
supposing you have more than one test case for your SUT, it can be useful
to select all those tests and leaving out the rest of the suite.
This is the case when the @group annotation is handy. You can mark with
the @group $name annotation the docblock of test case classes, and also
add multiple lines if you feel the contained tests can be useful in more
than one scenario. Then the --group $group command line switch
excludes test cases which do not belong to $group from being run.

So we can finally give an example of running a test suite:

phpunit --bootstrap tests/TestHelper.php
--configuration=tests/configuration.xml

for instance we can restrict the selected tests to the NakedPhp_Form
package ones:

phpunit --bootstrap tests/TestHelper.php
--configuration=tests/configuration.xml --group=NakedPhp_Form

or requiring a code coverage report to see where we need to add test
code:

phpunit --bootstrap tests/TestHelper.php
--configuration=tests/configuration.xml --coverage-html directory/

I hope these tips will be useful to you for utilizing phpunit at its best. It is a
very well-crafted tool that you can take advantage of for TDD purposes,
and also for functional and integration tests. Although the name suggests
unit testing as a goal, you should certainly include in your test suite some
functional tests, which exercise a feature provided of more than one

http://en.wikipedia.org/wiki/Test-driven_development
http://www.php.net/manual/en/function.require-once.php

Practical Php Testing 51

object, and integration tests, which covers the wiring of your object and
verify that your application works on an end-to-end basis.

Bonus tip: using --no-globals-backup and --no-static-backup can
speed up your tests execution by avoiding unuseful isolation of tests. If
your application has no global state they will work correctly anyway.

TDD exercises
9.1 Run all your tests and generate an html coverage report. If you have
TDDed your classes, the coverage should be close to 100%.

52 Chapter 10: The TDD theory

Chapter 10: The TDD theory
Test-Driven Development is a very practical approach about testing and
design, and in this chapter I will describe the fundamentals of TDD and the
benefits it gives to an application.

TDD is a test-first approach, and prescribes to start writing tests even
before a line of production code is written. The application design is
done a bit at the time: every test that is added specifies a part of the
internal or external Api. If you have done some exercises along the way to
this chapter, you are already familiar with this concept.

This does not mean that no design should be done upfront: TDDers prefer
yo say that Little Design Up Front should substitute Big Design Up Front.
The reason for doing less design is taken to embrace iterative methods like
TDD, where after every iteration the developer gets to know more about
the domain and the system he is building. I am not talking about Agile
iterations (some weeks): TDD is a lower-level practice which influences
how you write code. TDD iterations are usually 5-minutes long, and every
longer iteration may suggest you should break it up in more pieces (which
corresponds to fine-grained tests).

Note that a big advantage of TDD is the testability of the code produced:
since you write tests before any production code, the resulting classes will
be forced to be testable: you decide the Api. Moreover, writing tests first
ensures that they will be written at all, and not skipped at the end of the
day to write other code.

But the biggest advantage of design crafted via TDD is that since classes
are forced to be testable, they are hence maintainable and less entangled.
A testable design is a decoupled one and we gain all the advantages
of testability.

TDD Phases
The basic TDD cycle (around five minutes) consists in three phases. Red
and green are the typical colorization of XUnit results.

RED
You write a failing test. This test should be exercising one feature of your
SUT, which does not exist yet. The more fine-grained the test is, the

Practical Php Testing 53

shorter the cycle will become and there will be less chances to breaking up
working code or wondering on how to make the tests pass.

Note that the test should fail, to ensure that it actually tests the SUT.
Since the SUT or the particular SUT's functionality does not exist yet, it is
obvious that a correct test will fail.

Sometimes you craft a passing test to improve coverage or that
accidentally passes since your code already implements the functionality.
There are different reactions in this case:

• if the SUT already implements correctly the functionality you intend
to test, leave the test in place and restart the cycle. Probably you
will add this type of tests to gain confidence before major
refactorings.

• if the SUT does not implement the full functionality, try to change
the input to catch the SUT when it is failing. Maybe it does return a
correct result for this data by accident.

GREEN
When you have a shiny new failing test, you should now open the SUT's
class file(s) and start writing production code. You are allowed to write as
much production code as it is needed to make the test pass.

You're not allowed to write more code. If I can remove a line of code
from your SUT and still get all tests green, this means this line is not
necessary (so remove it yourself before I do). This design choice is done to
prevent bloat and, more importantly, to not allow untested code to leak
into the SUT.

REFACTOR (sometimes orange)
After having committed nearly every design crime to get a green result,
like using a buch of GOTOs with a look-up table, it's time to clean up and
refactor the mess.

Obviusly I'm joking and refactoring is usually not necessary. Though, after
a certain number of cycles the new code really adds up and you
may want take the chance to reorganize the code base before it
becomes a mine field.

The key here is that you must start refactoring after a green phase and
finish with the tests still green. If you reach a new and better codebase
state, you should pass only trough green states, never breaking anything.

54 Chapter 10: The TDD theory

The reason of this rule-of-thumb is that once you start breaking the code it
becomes difficult to going back. The best solution is to maintain a working
application all the time.

You can also refactor tests: in this case you should work during a red
phase, even by temporarily breaking the SUT, to test that the tests really
fail when they should do (no pun intended… to watch the watchmen).

More often, you will refactor tests and production code at the same time to
better assign responsibilities. Try to keep a working system for as long as
you can, or you can find yourself in a situation where you cannot get a
green state anymore and you are forced to revert to the initial version.

After [potential] refactoring, go back to red and start writing another test.

Now you are an expert on TDD theory and you have a reference guide
here. The next step is practicing, practicing and practicing. It is said
that to become an expert TDDer you should write at least 1500 tests, so
you'd better off starting now. :)

Practical Php Testing 55

Chapter 11: Testing sqrt()
As a final case study, I want to introduce a very
simple SUT: the php sqrt() function, which
calculates the square root mathematical function
on its argument.

For the readers that are now experiencing school
reminescences, the square root functions for real
numbers is defined as the number that once
multiplicated for itself gives the argument of the
function. Thus, the square root of 9 is 3, while the
function is not defined for negative numbers.
More complex extensions of the square root functions are not commonly
used in web development and we will stick to this definition, which
corresponds to php standard implementation.

Note that I chose a simple case, without external dependencies. Though,
this case study is still generic as dependencies are always mocked or
stubbed out from a SUT, and tests concentrate on its functionalities.

So how can we extensively test the sqrt() function? The first obvious
answer would be specifying every positive number as its input, along with
the square root found with a pocket calculator. This approach is not
feasible as integers are represented with 32 bit in php and, leaving out one
bit for sign, there are about 2^31 values to try in the function, which are
too many test cases for an exhaustive test. If we include also the 64-bit
floating point numbers in test cases, the number of cases grows even
more, but we will limit this discussion to integer inputs and outputs to
exclude floating point precision problems.

Remember that object-oriented systems maintain also state, which means
other internal parameters of an object can change and influence the
results. Thus exhaustive testing is never used.

Before discussing what possible input values we should consider, let me
introduce two tests design methods:

• black box testing: deriving test cases from the external interface
of the SUT.

• white box testing: deriving test cases from the internal structure
of the SUT.

56 Chapter 11: Testing sqrt()

While we should strive for decoupling between production classes, the
bond between unit tests and their SUTs is forced to be strong. The more we
move to an higher view (functional and integration tests), and the more we
abstract away to simplify maintenance. Integration and acceptance tests
are usually black-box tests which do not care about how we produce a
value (how the square root function is calculated or an html page is
generated), but only about the final result.

Unit tests instead are focused on ensuring that a unit of functionality works
well, and are written to drive design of the SUT.

When we read code coverage reports, we tune unit tests to cover more
code paths (but if you do TDD code coverage is always very high). If-else
branches, while conditions and earlier returns are exercised by different
white-box tests.

If we had the implementation of sqrt() in userland code, we should code
different tests that exercise different code branches. Better, we should
write different tests and extend the code just enough to make these tests
pass.

There is an equivalence relation between input values that stimulate the
SUT in the same way (run the same code). We should include in white-box
tests only some values from each equivalence class, usually including the
boundaries of every range if we are dealing with numeric inputs.

Though, we are limited to black box testing in this case since sqrt() is
implemented in C, which does not fall under the umbrella of our code
coverage tools.

Note that if we TDD the class, we are doing white box testing and every
new test method or input value we add fail by definition (red phase).
This means that the new code that is added is exercised only by this input
and state combinations and was not covered by previous tests.

Then the test passes (green), and the cycle repeats with new white-box
tests that do not overlap. So TDD as predicted is a great method for
writing unit tests. In the orange phase, we refactor code and it can happen
that different tests cover the same code after refactoring. In this case, we
can indeed extend refactoring to the tests themselves, but test abundancy
is rarely a problem in real world (test performance is) and a long test suite
is a safety net for future refactoring, as long as it runs sufficiently fast.

Practical Php Testing 57

My black box test case for sqrt() is at the end of the chapter, while a white
box test case would be the final product of the exercise.

TDD Exercises
11.1 TDD a Calculator class, which has only the method Calculator::sqrt().
Implement the class one test at the time.

Remember that:

- you should add a *failing* test and then improving production code
to handle the new test case.

- you can add a test only if the tests are green

- you can add production code only if the tests are red, and if I
removed part of your addition the test should return red (ensuring you are
not writing unused code)

- you cannot use the sqrt() function in this exercise

- you can use a guess-and-check method: to find the square root of
36, try 1, try 2, try 3... until you get to 6. Round the result to the nearest
integer.

58 Chapter 11: Testing sqrt()

Code sample
<?php

class SqrtBlackTest extends PHPUnit_Framework_TestCase
{
 public function inputNumbers()
 {
 return array(
 array(0, 0),
 array(1, 1),
 array(4, 2),
 array(9, 3),
 array(-1, NAN),
 array(-2, NAN),
 array(1000000, 1000),
);
 }

 /**
 * @dataProvider inputNumbers
 */
 public function testSquareRootIsCalculated($input, $output)
 {
 $this->assertEquals($output, sqrt($input));
 }
}

Practical Php Testing 59

Glossary
• Api: interface that a software program implements in order to allow

other software to interact with it. In object-oriented programming,
an Api is composed of interfaces and final classes which the client
program depends on and that are provided by the original program,
which maybe a library or a framework like Zend Framework or
PHPUnit.

• constraint object: representation of a specification about objects.
For instance, a IsEqual constraint object in PHPUnit can be used to
check other object are equal to the one passed at construction. In
DDD this type of object is called a Specification pattern and it is the
personification (or objectification) of an selection criteria: the more
you think in objects, the more reusable the resulting code will be.

• Law of Demeter: Only talking to immediate object references,
often stated as using only one dot or → in every line of code. The
purpose of this law (actually a suggestion) is to protect a class from
changes in far collaborators, by accessing only its immediate friends
from its code.

• DDD aka Domain-Driven Design: a style of development that
focus in domain knowledge, where the core of an application
consists in the classes and objects that represents the domain and
everything else depends on them.

• dependency injection: the process of supplying an external
dependency to a software component, instead of forcing it to look
up for collaborators. This is in opposition to service locator solutions
and hardcoded wiring: DI takes away the wiring responsibility from
the class.

• entity: a class which purpose is maintain state, with few or no
references to external services. User and Post are common
examples of entity classes in web applications. For this entities to be
testable without using a database, they should be Plain Old Php
Objects that do not extend anything.

• fluent interface: method chaining that provides the ability to write
code like
Object.DoSomething().DoSomethingElse().DoAnotherThing(); every
method returns the object itself ($this).

60 Glossary

• Miško Hevery: Agile coach at Google, guru of TDD and design for
testability.

• newable: class with little behavior and lot of state, such as String or
an entity. Not prone to dependency injection since it may be
serialized and created at any time.

• phpDocumentor: auto-documentation tool for the php language.
The tool generate Api documentation containing method signature
by parsing standard comment blocks in the php code.

• PHPUnit: php instance of the xUnit family of testing frameworks.
PHPUnit is the standard for testing every kind of php code and it is
used extensively throughout this book.

• refactoring: changing a computer program's internal structure
without modifying its external functional behavior. Refactoring
improves the design of existing code and it is often compared to
cleaning the dishes.

• reflection: process by which a computer program can observe and
modify its own structure and behavior, e.g. obtaining the list of a
class's methods.

• require_once(): statement used in php to include other source
files. In php there is no one-time compilation and classes can be
included on the fly by requiring other php scripts, a job that is
usually performed by an autoloader.

• Spl: Standard Php Library, the main object-oriented component of
php. It is included by default in every php 5 installation but lacks
many functionalities.

• SUT: system under test. In unit tests, indicates a class, while in
functional and integration tests an object graph.

• Test doubles: replacement used in unit tests to isolate the SUT
from collaborators. Stubs and mocks are explained in chapter 7
and 8 and are the mainly used instances of Test doubles. Another
type is the Fake object, which is a running implementation of an
interface that is particularly useful in testing for its simplicity (e.g.
in-memory database instances).

• TDD: development practice where first the developer writes a failing
automated test case, then produces code to pass that test and
finally refactors the new code to acceptable standards. TDD is

Practical Php Testing 61

explained in chapter 10.

• weltanschauung: German term for world view, ultimate global
vision of a person or organization. By extension, it means philosophy
of life.

• xdebug: PHP extension for powerful debugging and testing. This
extension is fundamental to gain introspection on executed code
and it is used by phpunit 3 to generate code coverage reports.

• xUnit: the set of testing frameworks that includes JUnit, PHPUnit,
SUnit, Nunit... This frameworks share a very similar Api (test cases,
setUp, tearDown(), assert*(), ...)

	Introduction
	About the author
	Contacts
	Donations
	Errata

	Disclaimer
	Copyright?
	Acknowledgements

	Preface: why testing?
	Chapter 1: PHPUnit usage
	TDD exercises

	Chapter 2: write clever tests
	TDD exercises
	Code sample

	Chapter 3: assertions
	TDD exercises
	Code sample

	Chapter 4: fixtures
	TDD exercises

	Chapter 5: annotations
	TDD exercises
	Code sample

	Chapter 6: refactoring and patterns
	TDD exercises

	Chapter 7: stubs
	TDD exercises
	Code sample

	Chapter 8: mocks
	TDD exercises
	Code sample

	Chapter 9: command line options
	TDD exercises

	Chapter 10: The TDD theory
	TDD Phases
	RED
	GREEN
	REFACTOR (sometimes orange)

	Chapter 11: Testing sqrt()
	TDD Exercises
	Code sample

	Glossary

